5,276 research outputs found

    Redefining the boundaries of interplanetary coronal mass ejections from observations at the ecliptic plane

    Get PDF
    On 2015 January 6-7, an interplanetary coronal mass ejection (ICME) was observed at L1. This event, which can be associated with a weak and slow coronal mass ejection, allows us to discuss on the differences between the boundaries of the magnetic cloud and the compositional boundaries. A fast stream from a solar coronal hole surrounding this ICME offers a unique opportunity to check the boundaries' process definition and to explain differences between them. Using Wind and ACE data, we perform a complementary analysis involving compositional, magnetic, and kinematic observations providing relevant information regarding the evolution of the ICME as travelling away from the Sun. We propose erosion, at least at the front boundary of the ICME, as the main reason for the difference between the boundaries, and compositional signatures as the most precise diagnostic tool for the boundaries of ICMEs.Comment: 9 pages and 7 figures in the original forma

    BOND: Bayesian Oxygen and Nitrogen abundance Determinations in giant H II regions using strong and semi-strong lines

    Full text link
    We present BOND, a Bayesian code to simultaneously derive oxygen and nitrogen abundances in giant H II regions. It compares observed emission lines to a grid of photoionization models without assuming any relation between O/H and N/O. Our grid spans a wide range in O/H, N/O and ionization parameter U, and covers different starburst ages and nebular geometries. Varying starburst ages accounts for variations in the ionizing radiation field hardness, which arise due to the ageing of H II regions or the stochastic sampling of the initial mass function. All previous approaches assume a strict relation between the ionizing field and metallicity. The other novelty is extracting information on the nebular physics from semi-strong emission lines. While strong lines ratios alone ([O III]/Hbeta, [O II]/Hbeta and [N II]/Hbeta) lead to multiple O/H solutions, the simultaneous use of [Ar III]/[Ne III] allows one to decide whether an H II region is of high or low metallicity. Adding He I/Hbeta pins down the hardness of the radiation field. We apply our method to H II regions and blue compact dwarf galaxies, and find that the resulting N/O vs O/H relation is as scattered as the one obtained from the temperature-based method. As in previous strong-line methods calibrated on photoionization models, the BOND O/H values are generally higher than temperature-based ones, which might indicate the presence of temperature fluctuations or kappa distributions in real nebulae, or a too soft ionizing radiation field in the models.Comment: MNRAS in press; 21 pages, 22 figures, 2 tables; code, data and results available at http://bond.ufsc.b

    A Carrington-like geomagnetic storm observed in the 21st century

    Get PDF
    In September 1859 the Colaba observatory measured the most extreme geomagnetic disturbance ever recorded at low latitudes related to solar activity: the Carrington storm. This paper describes a geomagnetic disturbance case with a profile extraordinarily similar to the disturbance of the Carrington event at Colaba: the event on 29 October 2003 at Tihany magnetic observatory in Hungary. The analysis of the H-field at different locations during the "Carrington-like" event leads to a re-interpretation of the 1859 event. The major conclusions of the paper are the following: (a) the global Dst or SYM-H, as indices based on averaging, missed the largest geomagnetic disturbance in the 29 October 2003 event and might have missed the 1859 disturbance, since the large spike in the horizontal component (H) of terrestrial magnetic field depends strongly on magnetic local time (MLT); (b) the main cause of the large drop in H recorded at Colaba during the Carrington storm was not the ring current but field-aligned currents (FACs), and (c) the very local signatures of the H-spike imply that a Carrington-like event can occur more often than expected.Comment: 18 pages, 2 figures, accepted for publication in SWS

    Supergranular-scale magnetic flux emergence beneath an unstable filament

    Get PDF
    Here we report evidence of a large solar filament eruption on 2013, September 29. This smooth eruption, which passed without any previous flare, formed after a two-ribbon flare and a coronal mass ejection towards Earth. The coronal mass ejection generated a moderate geomagnetic storm on 2013, October 2 with very serious localized effects. The whole event passed unnoticed to flare-warning systems. We have conducted multi-wavelength analyses of the Solar Dynamics Observatory through Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) data. The AIA data on 304, 193, 211, and 94 \AA sample the transition region and the corona, respectively, while HMI provides photospheric magnetograms, continuum, and linear polarization data, in addition to the fully inverted data provided by HMI. [...] We have observed a supergranular-sized emergence close to a large filament in the boundary of the active region NOAA11850. Filament dynamics and magnetogram results suggest that the magnetic flux emergence takes place in the photospheric level below the filament. Reconnection occurs underneath the filament between the dipped lines that support the filament and the supergranular emergence. The very smooth ascent is probably caused by this emergence and torus instability may play a fundamental role, which is helped by the emergence.Comment: 9 pages, 6 figures, online material at Journa

    Effects of an extra ZZ' gauge boson on the top quark decay t>cγt --> c \gamma

    Full text link
    The effects of an extra ZZ' gauge boson with family nonuniversal fermion couplings on the rare top quark decay t>ct --> c gammaarefirstexaminedinamodelindependentwayandthenintheminimal331model.Itisfoundthattherespectivebranchingfractionisatmostoftheorderof are first examined in a model independent way and then in the minimal 331 model. It is found that the respective branching fraction is at most of the order of 10^{-8}for for m_{Z'}=500GeVanddramaticallydecreasesforaheavier GeV and dramatically decreases for a heavier Z'boson.Thisresultsisinsharpcontrastwithapreviousevaluationofthisdecayinthecontextoftopcolorassistedtechnicolormodels,whichfoundthat boson. This results is in sharp contrast with a previous evaluation of this decay in the context of topcolor assisted technicolor models, which found that B(t --> c \gamma)\sim 10^{-6}for for m_{Z'}=1$ TeV.Comment: New paragraphs included to clarify our results, conclusion remains unchange

    Acyclic orientations with path constraints

    Get PDF
    Many well-known combinatorial optimization problems can be stated over the set of acyclic orientations of an undirected graph. For example, acyclic orientations with certain diameter constraints are closely related to the optimal solutions of the vertex coloring and frequency assignment problems. In this paper we introduce a linear programming formulation of acyclic orientations with path constraints, and discuss its use in the solution of the vertex coloring problem and some versions of the frequency assignment problem. A study of the polytope associated with the formulation is presented, including proofs of which constraints of the formulation are facet-defining and the introduction of new classes of valid inequalities

    Transition (LINER/HII) nuclei as evolved Composite (Seyfert 2/Starburst) nuclei

    Full text link
    We compare the circumnuclear stellar population and environmental properies of Seyfert and Composite (Seyfert + Starburst) nuclei with those of LINERs and LINER/HII transition galaxies (TOs), and discuss evidences for evolution from Seyfert/Composite to LINER/TO nuclei.Comment: 2 pages, 1 figure; to appear in the Proceedings of IAU Symp. No. 222: The Interplay among Black Holes, Stars and ISM in Galactic Nuclei, CUP, eds. T. Storchi-Bergmann, L. Ho and H. R. Schmit
    corecore